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Genome-wide profiling of nuclease protected domains reveals physical properties of chromatin
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Abstract

Protect-seq Methodology

Domain Calling with Hidden Markov Models

Comparison with DamID, Repli-seq, and ChIP-seq

Loss of heterochromatin

Protect-seq in HT1080

Conclusions, References, and Acknowledgements

In metazoan cell nuclei, chromatin is functionally divided into transcriptionally active
(euchromatin) or inactive (heterochromatin) regions. These heterochromatin regions
constitute large chromatin domains that are in close contact with the nuclear lamina. Such
lamina-associated domains (LADs) are thought to organize chromosomes inside the nucleus
and are enriched for repressive histone modifications. Genome-wide profiling of
heterochromatin, especially LADs, is often challenging and warrants a simpler and direct
method. Here we developed a new method, Protect-seq, aimed at identifying regions of
heterochromatin via resistance to nuclease degradation followed by next-generation
sequencing. We performed Protect-seq on the human colon cancer cell line HCT-116 and
observed overlap with previously curated LADs. We provide evidence that these protected
regions are enriched for the repressive histone modification H3K9me3 and to a lesser extent
H3K9me2 and H3K27me3. Moreover, the loss of H3K9me3 in human cells leads to an
increase in chromatin accessibility. In sum, we demonstrate a novel technique to identify
nuclease inaccessible regions of the genome and our data is consistent with the model that
repressive chromatin domains are compacted and targeted to the nuclear lamina, likely via
HP1 proteins, which act as scaffolds to maintain chromatin architecture.
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Figure 1 | Protect-seq principle and assay. (a) Schematic of Protect-seq. DNase I and MNase (scissors) degrade accessible chromatin.
The remaining 'protected' chromatin is isolated for sequencing. (b) DAPI stain of HCT-116 nuclei with and without nuclease treatment, white
boxes represent zoomed image (on right) (c) Spatial quantification of DAPI signal with and without nuclease treatment (d) KDE plot of
Protect-seq signal. (e) Pearson correlation of Protect-seq replicates and DNase-seq (ENCSR000ENM)1 in HCT116. (f) Next-generation
sequencing coverage track of DNase-seq (black; accessible chromatin), Protect-seq (red; inaccessible chromatin), and LaminB1 DamID-
seq (4DN)2 (black; LADs). Representative chromosome used (chr11). LaminB1 DamID-seq and Protect-seq data are normalized using
Reads Per Genome Coverage (RPGC) and displayed as log2ratio (signal/input).
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Figure 2 | Using Hidden Markov Models to identify Protect-seq domains. (a) Example of Gaussian distribution of Protect-seq data
used in HMM Viterbi calls (3-state HMM depicted). (b) Fraction of each chromosome covered by Protect-seq or LaminB1 DamID-seq
domains in HCT116. (c) Jaccard similarity coefficient representing the fraction of domain overlap between replicate pairs.

Figure 4 | Protect-seq domains are dependent on H3K9me3 and HP1
heterochromatin domains. (a) Genome browser view of various signal tracks.
Grey boxes indicate domain calls using HMMs. (b) Heatmap of k-means
clustered Protect-seq domains. Top, meta-profile plots for each cluster. (c)
Fraction of genome covered by Protect-seq domains in HCT116 and DKO with
light shading representing the fraction lost or gained in DKO cells. (d) Genome-
wide scatterplot of Protect-seq signal in HCT116 and DKO. Shading indicates the
strength of H3K9me3 signal in DKO cells.

Figure 5 | Protect-seq domains in the
fibrosarcoma cell line HT1080. (a) Genome
browser view of various signal tracks. Grey boxes
indicate domain calls using HMMs. (b) Fraction of
chromosome covered by Protect-seq or LaminB1
DamID-seq3 domain. (c) Pearson Correlation of
signal track data (d) Heatmap displaying enriched
genomic features within and outside Protected
domains. (e) KDE plots of genomic features
separated by Protect-seq HMM state.
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• Protect-seq is a novel technique to identify nuclease resistant chromatin domains
•Protect-seq is a simple, easy-to-use, cost-and-time effective method which does not require actively dividing cells
• Protected domains correlate with LADs, late replicating domains, and repressive histone marks

Figure 3 | Protect-seq domains overlap LADs, late-replicating DNA, and repressive histone modifications. (a) KDE plot of Protect-
seq, LaminB1 DamID-seq2, and Repli-seq2 domain length. Dashed line indicates median domain length. (b) Venn diagram of domain
overlap/intersect (c) Jaccard similarity coefficient representing the degree/fraction of domain overlap. (d) Pearson correlation of signal
tracks (e) KDE plots of genomic features separated by Protect-seq HMM state. (f) Scatterplot of Protect-seq and LaminB1 DamID-seq
(representative chromosomes used). Shading indicates the strength of H3K9me3 signal.
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