

Molecular Diagnostics for Gastrointestinal Parasites and Impact on Intestinal Microbiota in Rural Argentinian Children

Rojelio Mejia¹, Ashish Damania¹, Rebecca Jeun¹, Patricia Bryan¹, Rubén Cimino², Alejandro Krolewiecki², Maria Elena Bottazzi¹, Peter Hotez¹, Ashley Luck³, Barton Slatko³

National School of Tropical Medicine, Baylor College of Medicine, Houston, TX¹

Universidad Nacional de Salta, Salta Province, Argentina²

New England BioLabs, Inc. Ipswich, MA³

S S A B I N VACCINE INSTITUTE

Introduction

- >2 billion GI parasite infections worldwide
 - Poorest and resource-deprived communities
- Standard method of diagnosis: Stool microscopy
 - Sensitivity variable depending on prevalence, species, and concentration method
 - 50-90% sensitivity
 - Underestimates polyparasitism
- qPCR is rapid, quantitative, and high-throughput species-specific method
- GI parasites may disrupt normal intestinal microbiota
 - Decreased biodiversity is associated with disease
 - Malabsorption
 - Inflammatory bowel diseases

Materials and methods

- Field site: Orán, Argentina
 - Peri-urban community
 - Temperate climate
- 99 patient samples
 - Asymptomatic children
 - Ages 2-10 years old
 - No recent antibiotics

Stool samples evaluated by qPCR and microscopy for presence of :

Ascaris lumbricoides (Al) Strongyloides stercoralis (Ss) Ancylostoma duodenale (Ad) Giardia lamblia (Gl)

Necator americanus (Na) Cryptosporidium species (C) Trichuris trichiura (Tt) Entamoeba histolytica (Eh)

- qPCR required 50 mg samples
- Microscopy required 2 g samples
 - McMaster technique (semi-quantitative)
- NEBNext® Microbiome DNA Enrichment Kit
- NEBNext® Ultra™ DNA Library Prep Kit for Illumina®
- Illumina MiSeq® "shotgun" sequencing

Results

qPCR (ITS region) (ABI 7500) identified more cases of *Ascaris*, hookworm (Hw), *Strongyloides*, *Entamoeba histolytica* and *Giardia* infection than microscopy. (Tt, C) no positives

Decreased intestinal bacterial biodiversity in combined *Giardia* group versus No parasite group

qPCR identifies more polyparasitism than microscopy

 Giardia infected group had higher abundance of Bacteroidetes compared to No Parasites group with higher Firmicutes (p < 0.05)

Giardia infection decreases intestinal bacterial biodiversity

Conclusions

- qPCR can detect more parasites than microscopy
 - *Ascaris* 91.3% Sens, 90.5% NPV
 - Hookworm 95.5% Sens, 98.4% NPV
 - Strongyloides 100% Sens, NPV
 - Giardia 87.5% Sens, 97.2% NPV
- qPCR can identify polyparasitism better than microscopy
 - Important for treatment selection
- GI parasitic infections at high prevalence
 - qPCR detected *Giardia* 6 x more than microscopy
- Giardia infected group had decreased intestinal microbiota biodiversity (p = 0.01667)
 - *Giardia* infected group (2.7)
 - No Parasite group (3.45)
- Giardia infected group had significant increases in Bacteroidetes specifically Prevotella species
- Useful for epidemiology and morbidity studies
 - Surveillance after mass drug administration and vaccine programs
 - Expand understanding of morbidity and malnutrition
 - Cost is less than \$1.00 US per patient to screen for these parasites
- Future directions
 - Correlate quantity of parasite DNA with clinical outcomes
 - Associate morbidity to changes in microbiome
 - Treat children with anti-parasitics and evaluate changes in microbiome

Acknowledgements

Funding for this project was provided by the National School of Tropical Medicine and New England BioLabs, Inc.